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ABSTRACT 

Advances in the automobile industry and intelligent transportation systems in the recent decade have 

made what was once a dream, driver-less vehicles, closer than ever to reality now. Although autonomous 

vehicles introduce many benefits ranging from decreasing delay to higher levels of safety on roads, they 

will be priced relatively high once they enter the market. The high price and the consequent low demand 

may translate to less motivation for the automobile industry to move toward mass production, and it could 

take decades for the market to reach equilibrium. In this paper, we describe formulations for analyzing 

shared ownership and use of autonomous vehicles as well as some variants that we newly propose. 

Households interested in participating in the program will join together, forming clusters of households. 

Each cluster will share the ownership of a set of autonomous vehicles. The program also allows 

participants to rideshare together. Such a program will decrease the number of vehicles needed by 

households, and will therefore make the ownership of autonomous vehicles more economical. In addition, 

clusters of households can register their vehicles in a carsharing program when they are not being used, in 

order to partially cover the ownership cost. We implement this program for a sample of households in San 

Diego, California, and discuss the reduction in vehicle ownership as a result of participating in the 

program. 

 

Keywords: Autonomous, Driverless, Self-driving, Shared Ownership, Sharing Economy, Fractional 

Ownership, Shared Use, Carsharing, Ridesharing  
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INTRODUCTION 

Sharing economy, also known as collaborative consumption, is a fairly old concept that focuses on the 

benefits obtained from sharing resources (products or services) that would otherwise go unused. Although 

communities have been using the concept of sharing economy locally for many years, advent of internet 

has led to its spread in global populations, and highlighted its benefits.  

The sharing economy model has been historically used for high-value commodities, such as 

exotic automobiles, yachts, private jets, vacations homes, and the like. Curvy Road, for example, an 

exotic carshare company founded in 2000, provides fractional ownership of high-end vehicles in four 

cities in the US (1). Although it has been long realized that taking ownership of under-utilized high-value 

assets may not be always economically wise, this economic model has become more popular recently for 

less expensive resources as well, thanks to new platforms that allow easy and quick development of 

companion mobile applications 

Autonomous (or driver-less) vehicles are expected to enter the market in the near future. 

Although these vehicles introduce many benefits such as higher degree of safety and lower delays to the 

users and the transportation system in general, their high prices can be prohibitive when it comes to 

purchasing them. On the other hand, autonomous vehicles can decrease the total number of vehicles 

needed to perform daily tasks, since these vehicles can drive themselves to locations where there is 

demand for transportation. One possible strategy to make autonomous vehicles more affordable is to 

encourage shared ownership of these vehicles. 

In addition to shared ownership, it is possible to decrease the ownership cost of autonomous 

vehicles further by (1) shared use of these vehicles, and (2) renting out the vehicles when they are not 

being used by owners.  

Since autonomous vehicles can drive themselves, owning these vehicles decreases the number of 

vehicles a household requires to perform daily tasks. Figure 1 shows the average daily vehicle miles 

travelled (VMT) by each vehicle in a household in the US in 2009. This figure suggests that the higher the 

number of vehicles owned by a household, the less the average use of each additional vehicle would be. 

Although for a typical household owning more than one vehicle might be financially justifiable 

considering the level of comfort and peace of mind it might bring, this justifiability decreases with the 

purchase of additional vehicles. Apart from the initial investment (or monthly payments), the cost of 

insurance, depreciation of value, and parking can turn vehicle ownership into a financial burden. With 

autonomous vehicles, fewer vehicles can cover the same trips compared to a higher number of regular 

vehicles. 

 In this paper, we introduce analytical optimization schemes to study shared vehicle ownership 

and use program, in which a group of households jointly own and use a set of autonomous vehicles. 

These households can share rides with each other if the spatiotemporal distribution of their trips allow 

that.  Though no rigorous analysis under optimal operations appear to have been done in the literature yet, 

there is some awareness of such possibilities in the automotive industry as well as among the increasing 

number of researchers and aficionados of autonomous vehicles (2, 3, 4, 5). In this paper, along with an 

analytical formulation, we also offer certain new possibilities such as renting the vehicles out when no 

one is using them. 

The analysis presented here are equally applicable to both fully autonomous vehicles and 

driverless vehicles (which may not be technically autonomous), the distinction between the two terms 

being relatively well-known now. In the following discussions, however, we use only the term 

“autonomous” to avoid unnecessary repetition of the fact that it refers to driverless vehicles as well.  



LITERATURE REVEIEW 

The proposed model in this paper combines three shared mobility alternatives: fractional vehicle 

ownership, and peer-to-peer car- and ride-sharing. We combine the individual advantages offered by each 

of these models, and propose a system that attempts to maximize efficiency. 

 Fractional ownership of luxury commodities emerged in the US in 1970s with real estate time 

shares, and was later spread to other high value commodities (6). Ford, in partnership with Zoomcar, is 

the first company to start a pilot project of fractional ownership of non-luxury vehicles in Bengaluru, 

India, as a part of its 25 mobility experiment initiative (7). During this three month pilot which is planned 

to take off in 2015, Zoomcar will provide 5 vehicles, each of which will be shared by 6 individuals. This 

is a first step for Ford and Zoomcar to study the impacts and implications of fractional vehicle ownership, 

and Ford is planning to build upon this first step in the future (8).  

 

 
FIGURE 1 Average daily vehicle miles for households with various number of vehicles. The figure is from 

the National Household Travel Survey (NHTS), 2009. 

 In the proposed system in this paper, households who share the ownership of vehicles have the 

possibility of sharing rides, if their trips are spatiotemporally compatible. Ridesharing systems are well-

studied in the literature, and a large volume of studies have confirmed their numerous advantages, 

including savings in vehicle miles travelled, and less damage to the environment (9, 10). 

 In order to make shared ownership of autonomous vehicles more affordable, households can rent 

their vehicles when they are not being used. The advantage of using autonomous vehicles in carsharing 

programs is that the complicated dispatching problem that one-way carsharing systems face does not 

arise. A good review and classification of carsharing models can be found in Barth, M., and S. A. 

Shaheen (11). There are multiple studies that link carsharing to reduction in household vehicle holdings, 

increase in older vehicle sales, and postponing vehicle purchase (12, 13). Additional studies highlight the 

positive impact of carsharing on VMT (14, 15). 

To the best of our knowledge, this study in the first to focus on shared ownership and use of 

autonomous vehicles with an analytical formulation. In order to implement the shared ownership 

program, we need to form clusters of households, where members of each cluster jointly own a set of 

autonomous vehicles. The goal is to increase efficiency by finding the minimum number of vehicles each 

cluster requires, and allowing members of each cluster to rideshare if the opportunity presents itself. This 

is similar to the problem of finding the minimum number of vehicles in a dial-a-ride problem (DARP) 

with time windows (16, 17).  

In addition, we allow clusters to rent out their vehicles using a central carsharing system. The 

problem of allocating vehicles to dynamic requests is similar to the dynamic DARP with time windows. 
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Cordeau et al. (18) provides a literature review on the algorithms developed for the dynamic DARP. The 

computational time, and/or number of requests these algorithms are able to manage presents significant 

limitations for the purpose of this paper. We propose a ‘greedy’ heuristic algorithm that is able to provide 

high quality solutions within a short period of time. 

Finally, we implement the shared vehicle ownership and use program for a sample of households 

in San Diego, California, and comment on the resulting efficiency.   

SHARED VEHICLE OWNERSHIP AND USE PROGRAM 

Envision a set of households 𝐹, who share the ownership of a set of autonomous vehicles 𝑉. These 

households form a cluster to which the vehicles under their shared ownership belong. Each vehicle 𝑣 ∈ 𝑉 

has the capacity to carry 𝐶𝑣 number of passengers. Each household 𝑓 ∈ 𝐹 has a set of essential trips that 

need to be served by the set of autonomous vehicles. We define set 𝑀𝑒 to include all the essential trips of 

the households that belong to the cluster. Common types of essential trips may include work-based trips, 

grocery shopping, and trips to school. However, households can include any type of trips in the set of 

essential trips, if they need to ensure regular access to vehicles for such trips. 

For a given trip 𝑘, a cluster member needs to input into the system the location of the origin of the 

trip, 𝑂𝑆𝑘, the location of the destination of the trip, 𝐷𝑆𝑘, the earliest departure time from the origin 

location, 𝐸𝐷𝑘, and the latest arrival time at the destination location, 𝐿𝐴𝑘.  

While vehicles are idle, they can be rented out to satisfy a set of on-demand transportation 

requests, 𝑀, in order to cover a part of the system cost. A rental request 𝑘 ∈ 𝑀 should include the 

location where a vehicle needs to deliver itself (𝑂𝑆𝑘), and the location where it needs to return (𝐷𝑆𝑘), 

along with the rental period duration (𝑃𝑘), and the rental time window ([𝐸𝐷𝑘, 𝐿𝐴𝑘]). 
The first goal of the system is to advise households in a cluster on the minimum number of 

vehicles they need to purchase to cover their set of essential trips. In the interest of higher efficiency, the 

system is designed to allow cluster members to rideshare, if the spatiotemporal proximity of their trips 

permit it. The second goal of the system is to maximize the total number of on-demand carsharing 

requests, in order to maximize the external revenue generated. These goals are implemented sequentially, 

i.e. we first determine the minimum number of vehicles for each cluster of households, and then use these 

vehicles for carsharing during their idle times. In the next section, we mathematically model these two 

stages.   

Mathematical Modeling 

In order to model the system defined in the previous section, we formulate two optimization problems. 

The first problem finds the minimum number of autonomous vehicles that should be owned by a cluster, 

in order to guarantee that its set of essential trips will be served, and provides vehicle itineraries. The 

second problem uses the vehicles’ idle times to serve the maximum number of on-demand carsharing 

requests. 

To formulate these two problems, we need to first define a number of sets. For a given cluster, we 

define a set of stations, 𝑆𝑒, that contains the origin and destination locations of the cluster’s essential trips. 

Furthermore, we define set 𝑆 to contain all the origin and destination locations of all essential and non-

essential trips (by all clusters). By introducing stations, we discretize the space dimension of the problem. 

In addition, we discretize the study time horizon into a short time intervals, 𝑑𝑡. We define set 𝑇 to include 

all time intervals in the study time horizon. In this study, we use 𝑑𝑡 = 5 min. In a network discretized in 

both time and space, we define a node 𝑛 as a tuple (𝑡𝑖 , 𝑠𝑖) ∈ 𝑇 × 𝑆. Consequently, we define a link ℓ as a 

tuple of nodes ℓ = (𝑛𝑖, 𝑛𝑗) = (𝑡𝑖, 𝑠𝑖, 𝑡𝑗, 𝑠𝑗), where (𝑡𝑗 − 𝑡𝑖)𝑑𝑡 is the travel time between stations 𝑖 and 𝑗. 

We define set 𝐿 to include all links.  



Furthermore, we define an origin depot, 𝐷𝑜, and a destination depot 𝐷𝑑. The depot stations are 

not real locations on the network, and are used to assist in the formulation of the problem. 𝐷𝑜 is connected 

to all stations in set 𝑆, and all stations in 𝑆 are connected to 𝐷𝑑. Furthermore, 𝐷𝑜 and 𝐷𝑑  are connected to 

each other. Figure 2 displays a typical network and demonstrates the connection between the depots and 

set of stations. 

We perform a pre-processing procedure to reduce the size of the input sets to the problem (19). 

Through this procedure, we find the links that are spatiotemporally reachable for each trip 𝑘 ∈
{𝑀 ∪ 𝑀𝑒} given its time window, and keep such links in set 𝐿𝑘. Therefore, when formulating the 

problem, we don't need to place explicit constraints on the time windows of trips, since only links with 

feasible time windows are members of set 𝐿𝑘. 

 
FIGURE 2 A typical network to demonstrate the connection of depot stations together, and to members of 

set 𝑺 

Routing of Autonomous Vehicles 

The problem of finding the minimum number of vehicles required to serve a cluster’s set of essential trips 

is formulated through equations (3) − (10). The formulation requires two sets of decision variables 

defined in (1) and (2). 

𝑥ℓ
𝑣   = {

1   If vehicle 𝑣 travels on link ℓ
0   Otherwise                                 

 (1) 

𝑦ℓ
𝑘𝑣 = {

1   If trip 𝑘 is carried out by vehicle 𝑣 on link ℓ
0   Otherwise                                                              

 (2) 

Given that the households in a cluster have a total of 𝑚 members, |𝑚| is an upper-bound on the 

number of vehicles needed to serve the cluster. Therefore, to determine the minimum number of vehicles 

required, we formulate an optimization problem, assuming there to be |𝑚| vehicles available, and try to 

maximize the number of vehicles that are not used.  

Constraint sets (4) and (5) force all vehicles to go back from 𝐷𝑑 to 𝐷𝑜 at the end of the day. 

Constraint set (6) is the flow conservation constraint, forcing all vehicles that enter a station at a given 

time interval to exit that station at the same time interval. Notice that vehicles do not have to physically 

leave a station. Members of set 𝐿 in the form ℓ = (𝑡, 𝑠, 𝑡 + 1, 𝑠) can cover such situations, where a vehicle 

can stay at a station for one time interval.  
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Constraint sets (7) − (9) route the set of trips in the network. Constraint set (7) and (8) ensure 

that a trip leaves its origin station and enters its destination station within the trip’s time window, 

respectively. Constraint set (9) is the flow conservation constraint. 

Constraint set (10) serves two purposes: it links vehicle routes with trip routes, and ensures that 

the capacity of vehicles is not exceeded. 

Vehicles that are excessive and are not actually routed in the system have to take the link that 

connects 𝐷𝑜 to 𝐷𝑑. Therefore, to minimize the number of used vehicles, we maximize the vehicles that 

travel on this link, as mathematically stated in the objective function of the problem in (3). The second 

term in the objective function minimizes the total travel time by vehicles in the network. We set a 

negative weight 𝑊 for the first term in the objective function to take into account the relative importance 

of minimizing number of vehicles in a cluster compared to the total travel time by the cluster members in 

the network.  

The solution to this problem simultaneously provides the minimum number of vehicles required 

to serve the essential trips, and itineraries for trips and the vehicles. 

Minimize 𝑊 ∑ 𝑥ℓ
𝑣

𝑣∈𝑉,ℓ∈𝐿:
𝑠𝑖=𝐷𝑜,𝑠𝑗=𝐷𝑑

+ ∑ (𝑡𝑗 − 𝑡𝑖)𝑥ℓ
𝑣

𝑣∈𝑉,ℓ∈𝐿:
𝑠𝑖≠𝑠𝑗

 
 (3) 

Subject to: ∑ 𝑥ℓ
𝑣

ℓ∈𝐿:
𝑠𝑖=𝐷𝑑,𝑠𝑗∈𝑆𝑒−𝐷𝑜

= 0 ∀𝑣 ∈ 𝑉 (4) 

 ∑ 𝑥ℓ
𝑣

ℓ∈𝐿:
       𝑠𝑖=𝐷𝑑,𝑠𝑗∈𝐷𝑜

= 1 ∀𝑣 ∈ 𝑉 (5) 

 ∑ 𝑥ℓ
𝑣

𝑠𝑖∈𝑆𝑒,𝑡𝑖∈𝑇:

  ℓ=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿

= ∑ 𝑥ℓ
𝑣

𝑠𝑗∈𝑆𝑒,𝑡𝑗∈𝑇:

ℓ=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿

 ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑒 − 𝐷𝑜 

: (𝑡𝑖 , 𝑠𝑖 , 𝑡, 𝑠) ∈ 𝐿 

(6) 

         ∑ ∑ 𝑦ℓ
𝑘𝑣

ℓ∈𝐿𝑘:
𝑠𝑖=𝑂𝑆𝑘

 𝑣∈𝑉

− ∑ ∑ 𝑦ℓ
𝑘𝑣

ℓ∈𝐿𝑘:
𝑠𝑗=𝑂𝑆𝑘

𝑣∈𝑉

= 1 ∀𝑘 ∈ 𝑀𝑒 (7) 

         ∑ ∑ 𝑦ℓ
𝑘𝑣

ℓ∈𝐿𝑘:
𝑠𝑗=𝐷𝑆𝑘

𝑣∈𝑉

= 1 ∀𝑘 ∈ 𝑀𝑒 (8) 

         ∑ 𝑦ℓ
𝑘𝑣

𝑠𝑖∈𝑆𝑒,𝑡𝑖∈𝑇:

ℓ=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿𝑘

= ∑ 𝑦ℓ
𝑘𝑣

𝑠𝑗∈𝑆𝑒,𝑡𝑗∈𝑇:

ℓ=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿𝑘

 ∀𝑣 ∈ 𝑉, 𝑘 ∈ 𝑀𝑒 , 𝑡 ∈ 𝑇, 

𝑠 ∈ 𝑆𝑒 − {𝑂𝑆𝑘 , 𝐷𝑆𝑘} 

: (𝑡𝑖 , 𝑠𝑖 , 𝑡, 𝑠) ∈ 𝐿𝑘 

(9) 

     ∑ 𝑦ℓ
𝑘𝑣

𝑘∈𝑀𝑒:ℓ∈𝐿𝑘

≤ 𝑥ℓ
𝑣 ∀𝑣 ∈ 𝑉, ℓ ∈ 𝐿 (10) 

On-demand Carsharing 

The pick-up and drop-off schedules for the set of essential trips are determined by the optimization 

problem in the previous section. The idle times of vehicles can be used to serve on-demand transportation 

requests through a carsharing program. 

Autonomous vehicles become free after dropping off a passenger, and before picking up the next. 

During this period, a vehicle needs to make a trip from the destination location of the first passenger, to 

the origin location of the second, in a travel time window that is bounded from below by the scheduled 



arrival time of the first passenger, and from above by the scheduled departure time of the second.  The 

first optimization problem ensures that this travel time window is larger than the actual travel time 

between the locations. Although this time window is not strictly an idle period, the vehicle can use the 

extra time to serve on-demand carsharing requests, and that is why we refer the time windows between 

two consecutive scheduled pick-up and drop-offs as free travel time window. 

In order to mathematically formulate the carsharing problem, we identify the set of free time 

windows between scheduled trips, and try to find the maximum number of carsharing requests that can be 

satisfied during these time windows. We keep the set of free time windows for each vehicle 𝑣 ∈ 𝑉 in set 

𝐽(𝑣). The 𝑗𝑡ℎ free time window of autonomous vehicle 𝑣 starts after dropping off its 𝑗𝑡ℎ assigned 

passenger, and ends when passenger 𝑗 + 1 needs to be picked up. We denote this travel time window by 

[𝐸𝐷𝑣,𝑗  𝐿𝐴𝑣,𝑗]. During this time window, the vehicle needs to travel from the destination location of its 

𝑗𝑡ℎ scheduled trip, to the origin location of its next scheduled trips. We denote these parameters by 𝑂𝑆𝑣,𝑗 

and 𝐷𝑆𝑣,𝑗 respectively.  

We formulate this problem using three sets of decision variables in equations (11) − (13). 

𝑥ℓ
𝑣𝑗

= {1   If vehicle 𝑣 travels on link ℓ during its 𝑗𝑡ℎ free time window
0   Otherwise                                                                                              

 (11) 

𝑦ℓ
𝑘𝑣𝑗

= {1   If request 𝑘 is served through the 𝑗𝑡ℎ free time window of vehicle 𝑣 on link ℓ 
0    Otherwise                                                                                                                               

 (12) 

𝑧𝑘 = {
1   If carsharing request 𝑘 is served
0   Otherwise                                         

 (13) 

Contrary to the problem in (11) − (13) where all vehicles had the same link set 𝐿, here each 

vehicle has a different link set in each of its free time windows. Let us keep the set of links for vehicle 𝑣 

during its 𝑗𝑡ℎ free window in set 𝐿𝑣𝑗. Furthermore, we introduce a new set 𝐿𝑘𝑣𝑗 = {𝐿𝑘 ∩ 𝐿𝑣𝑗}. This set 

includes all the links that are accessible to both vehicle 𝑣 during its 𝑗𝑡ℎ time window, and request 𝑘. 

The constraint sets that defines this problem are very similar to constraint sets in the previous 

section, where we routed the autonomous vehicles to satisfy the set of essential trips for each cluster.  

Constraint sets (15) − (17) route vehicles within their free time windows. Constraint set (15) 

ensures that each vehicle at each of its free time windows leaves its origin station after delivering its last 

passenger. Constraint set (16) ensures that the vehicle reaches its destination location before the 

departure time of its next scheduled passenger. Constraint set (17) is the flow conservation constraint. 

Constraint sets (18) − (20) route on-demand requests in the network. These sets of constraints 

are similar to constraint sets (15) − (17) that route vehicles, with a small variation that not all on-

demand requests can be necessarily served. This is reflected in the formulation by replacing 1 on the right 

hand side of constraint sets (15) and (16) by variable 𝑧𝑘 in constraint sets (18) and (19). 

Finally, constraint set (21) ensures that each served request is assigned a single vehicle, and each 

vehicle is assigned to only one request at a time. The objective of the carsharing problem (14) is to 

maximize the total number of served requests. 

Minimize         ∑ 𝑧𝑘

𝑘∈𝑀

 
 (14) 

Subject to:      ∑ 𝑥ℓ
𝑣𝑗

ℓ∈𝐿𝑣𝑗:

𝑠𝑖=𝑂𝑆𝑣,𝑗

− ∑ 𝑥ℓ
𝑣𝑗

ℓ∈𝐿𝑣𝑗:

𝑠𝑗=𝑂𝑆𝑣,𝑗

= 1 ∀𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣) (15) 

      ∑ 𝑥ℓ
𝑣𝑗

ℓ∈𝐿𝑣𝑗:

𝑠𝑗=𝐷𝑆𝑣,𝑗

= 1 ∀𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣) (16) 
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 ∑ 𝑥ℓ
𝑣𝑗

𝑠𝑖∈𝑆,𝑡𝑖∈𝑇:

  ℓ=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿𝑣𝑗

= ∑ 𝑥ℓ
𝑣𝑗

𝑠𝑗∈𝑆,𝑡𝑗∈𝑇:

ℓ=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿𝑣𝑗

 ∀𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣), 

∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 − 𝐷𝑜 

: (𝑡𝑖, 𝑠𝑖 , 𝑡, 𝑠) ∈ 𝐿𝑣𝑗 

(17) 

         ∑ 𝑦ℓ
𝑘𝑣𝑗

ℓ∈𝐿𝑘𝑣𝑗:

𝑠𝑖=𝑂𝑆𝑘

− ∑ 𝑦ℓ
𝑘𝑣𝑗

ℓ∈𝐿𝑘𝑣𝑗:

𝑠𝑗=𝑂𝑆𝑘

= 𝑧𝑘 ∀𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣), 

∀𝑘 ∈ 𝑀 

(18) 

        ∑ 𝑦ℓ
𝑘𝑣𝑗

ℓ∈𝐿𝑘𝑣𝑗:

𝑠𝑗=𝐷𝑆𝑘

= 𝑧𝑘 ∀𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣), 

𝑘 ∈ 𝑀 

(19) 

         ∑ 𝑦ℓ
𝑘𝑣𝑗

𝑠𝑖∈𝑆,𝑡𝑖∈𝑇:

ℓ=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿𝑘𝑣𝑗

= ∑ 𝑦ℓ
𝑘𝑣𝑗

𝑠𝑗∈𝑆,𝑡𝑗∈𝑇:

ℓ=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿𝑘𝑣𝑗

 ∀𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣), 𝑘 ∈ 𝑀, 

𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 − {𝑂𝑆𝑘 , 𝐷𝑆𝑘} 

: (𝑡𝑖 , 𝑠𝑖 , 𝑡, 𝑠) ∈ 𝐿𝑘𝑣𝑗  

(20) 

     ∑ 𝑦ℓ
𝑘𝑣𝑗

𝑘∈𝑀:ℓ∈𝐿𝑘𝑣𝑗

≤ 𝑥ℓ
𝑣𝑗

 ∀𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣), ℓ ∈ 𝐿𝑣𝑗  (21) 

SOLUTION METHOD 

We formulated the first optimization problem to find the minimum number of autonomous vehicles 

required to serve a cluster’s set of essential trips, and optimally route these vehicles. This problem does 

not need be solved in real-time, and therefore for problems of moderate size (as we will show later) 

optimization engines such as CPLEX can be used to solve it.  

The second optimization problem that maximizes the number of carsharing requests may need to 

be solved in real-time, as on-demand carsharing requests arrive. In this section, we devise a greedy 

heuristic algorithm to solve this problem in real-time. The numerical study that follows illustrates the 

level of efficiency and accuracy of this heuristic algorithm.  

The carsharing problem as described in the previous section bears similarities to the family of 

parallel machine scheduling problems in manufacturing. This class of problems includes a large variety of 

problems, and is used to find the optimal sequence of using machinery in manufacturing processes. 

Parallel machine scheduling problems vary in job characteristics (whether there are preemptive or 

precedence constraints present, fixed/relaxed start or finish time, etc.), machine characteristics (identical 

or non-identical, serial or parallel, etc.), and the optimality criteria (max number of completed jobs, min 

makespan, etc.). In the context of our carsharing problem, jobs are carsharing requests, and machinery are 

the free time windows of drivers. The problem we are trying to solve has the following characteristics: 

(1) No preemptive or precedence constraints present: Once we fix the schedules of the essential 

trips, the vehicles' free time windows can be used in any manner, i.e. there is no precedence requirement 

on the sequence of the carsharing request to be satisfied. 

(2) Multiple non-homogeneous machines/servers: In our problem each free time window of each 

vehicle acts as a separate server. Furthermore, our servers are non-homogeneous, meaning that each 

vehicle at each of its free time windows has distinct origin and station, as well as start and finish times. 

(3) Jobs are available during specified time windows, rather than with specific start and finish 

times: the carsharing requests specify a time window during which a vehicle is required, rather than 

specify the exact time for start and end of their requests. 

(4) Set-up cost: In our problem there exist server- and job sequence-dependent set-up costs. 

Because vehicles have to travel to location where they are requested, which vehicle is to be assigned to a 

request, and the sequence of requests assigned to a vehicle, all play a role. 



(5) Objective: maximizing the number of served jobs (satisfied carsharing requests). 

There is an extensive amount of literature on machine scheduling (20, 21). Rabadi et al. (22) 

propose heuristics to solve the non-preemptive unrelated parallel machine scheduling problem, in which 

machine- and job sequence-dependent setup times are considered, but jobs are all assumed to be available 

at time zero. Gabrel (23) proposes heuristics to solve the problem of scheduling non-preemptive jobs with 

an interval for starting time, on identical parallel machines. To the best of our knowledge, there is no 

study that combines both characteristics (set-up costs, and time windows for jobs), that can be used to 

solve the carsharing problem formulated in the previous section. 

Heuristic Algorithm to Solve the Carsharing Problem 

The heuristic algorithm described in this section is based on the earliest finishing time (EFT) heuristic 

originally designed to solve the interval scheduling problem. In the interval scheduling problem, there is a 

machine that needs to complete the maximum number of jobs possible. Each job has a specific start and 

finish time. At each step, the EFT heuristic selects the job with the earliest finishing time that does not 

conflict with the previously selected jobs. The EFT heuristic yields optimal solutions. 

The carsharing problem we need to solve is substantially more complicated than the interval 

scheduling problem. In fact, it is easy to see that the carsharing problem is NP-Hard. Here, we modify the 

EFT heuristic, and tailor it to solve the carsharing problem. Our proposed algorithm is displayed in Figure 

3(a).  

In the mathematical program in (14) − (21), we used the tuple (𝑣, 𝑗) to refer to the 𝑗𝑡ℎ free time 

window of vehicle 𝑣. In the interest of simplifying notation, we treat each free time window of each 

vehicle as a separate vehicle 𝑣′ ∈ 𝑉′, where 𝑉′ = {(𝑣, 𝑗)|𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽(𝑣)}.  

 

 

(a) Heuristic algorithm to solve the carsharing problem 
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(b) Determining the set of feasible requests 𝑹(𝒗′) for vehicle 𝒗′  

FIGURE 3 Greedy heuristic algorithm to solve the carsharing problem  

In the first step of the algorithm, we initialize two sets of arrays. The first array, 𝐿𝑜𝑐(𝑣′), 

determines the current location of vehicle 𝑣′. The second array, 𝑇𝑖𝑚𝑒(𝑣′), determines the time vehicle 𝑣′ 

becomes idle (available). We initialize the location array 𝐿𝑜𝑐 for each vehicle 𝑣′ ∈ 𝑉′ with the origin 

station of the vehicle, and the time array 𝑇𝑖𝑚𝑒 with the earliest departure time of the vehicle. 

The algorithm starts by determining the set of feasible carsharing requests for each vehicle. In 

order for a request to be feasible for a vehicle, the vehicle should be able to drive from its current location 

to the request’s origin station, and get there at or after the start of the request’s time window, stay in 

possession of the requester for the requested duration of time, and finally arrive at its own destination (the 

pick-up location of its next scheduled essential trip) before its latest arrival time. Figure 3(b) studies the 

feasibility of three carsharing requests for a vehicle. The boundaries of the boxes show the free time 

window of the vehicle, and the line (blue, red, green) associated with each request marks its time window. 

The first request (at the bottom) is feasible for the vehicle. The vehicle arrives at the request’s origin 

location after the request’s earliest departure time, is able to stay in possession of the requester for the 

demanded duration that ends before the request’s latest arrival time, and travels to its destination station 

within its time window. The second and third requests, however, are not feasible for the vehicle. In the 

case of the second request, the vehicle cannot stay in possession of the requester for the duration of the 

request, and in the case of the third request, the vehicle cannot go back to its own destination station after 

finishing serving the request. 

In the third step of the algorithm, we find finishing times for all combinations of vehicles and 

their set of feasible requests. The finishing time of vehicle 𝑣′ serving request 𝑘 includes the time required 

for the vehicle to arrive at the request’s origin location, and then stay in possession of the requestor for the 

demanded period of time. Note that if the vehicle arrives at a requested location before the start of the 

request’s time window, it has to wait until the start of the time window. The vehicle and request pair that 

lead to the earliest finishing time will be selected and matched together.  

In step 4, the location of the matched vehicle will be updated to the location of the destination of 

the matched request, and the time array of the assigned vehicle will be updated to the drop-off time of the 

rented out vehicle.  



In step 5, the matched request in step 3 will be eliminated from the set of available requests to all 

vehicles. Furthermore, since the time window and location of the matched vehicle in step 3 have been 

updated, the set of feasible requests for this vehicle needs to be updated as well. The algorithm stops 

when all vehicles have empty sets of feasible requests.  

Heuristic Algorithm Accuracy and Efficiency 
To evaluate the performance and efficiency of the proposed heuristic algorithm, we generated 380 

random instances of the carsharing problem, each in a randomly-generated grid network. The number of 

vehicles, |𝑉′|, and on-demand requests (|M|) in the problem instances vary between 20 and 350. We 

solved the problem instances both directly (by solving the carsharing optimization problem using AMPL 

CPLEX), and by means of the heuristic algorithm, on a PC with Core i7 3 GHz and 8GB of RAM. The 

solution times are reported in figure 4. This figure suggests that the savings in solution times are 

substantial. 

Next, we compared the number of served riders using the heuristic algorithm to the optimal 

solution, in order to assess the performance of the algorithm. The total number of served requests in all 

380 randomly generated problems solved by the heuristic algorithm was within 98% of the total number 

of served requests obtained by solving the problems to optimality using the AMPL CPLEX optimization 

engine. Figure 4(c) demonstrates the performance of the heuristic algorithm in more detail. This figure 

suggests that in 88% of the problem instances, we were able to obtain the optimal solution using the 

heuristic algorithm. In 10% of the problem instances, the heuristic solution managed to serve one less 

request than the optimal solution, and in 2% of the problem instances the heuristic solution was 

outweighed by the optimal solution by 2 served requests. The numerical tests imply that the trade-off 

between the performance and solution time, that is inevitable when replacing an optimal algorithm with a 

heuristic, may be in favor of the heuristic algorithm.  

 

   
(a) Solution time contour plot (sec) 

for solving the optimization 

problem using AMPL CPLEX 

(b) Solution time contour plot (sec) 

for solving the carsharing instances 

using the heuristic algorithm 

(c) Distribution of deviation 

of the heuristic solution from 

the optimal solution  

FIGURE 4 Performance of the carsharing heuristic algorithm 

REAL-LIFE APPLICATION 

We implemented the “shared ownership and use” program for a sample of households in San Diego, 

using data from the 2000-2001 California Statewide household travel survey. Using this survey, Caltrans 

managed to collect travel data from 17049 volunteer household from throughout California. Although the 

number of households completing the survey was less than 0.1 percent of the total number of household 

88
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residing in California in 2000, the sample was determined by the survey conductors to be a good 

representation of the state population.  

After cleaning the data by eliminating records with incomplete or faulty information, a total of 

1184 households residing in the San Diego County were retained. For these households, information on 

the number of household members, logged trips of each member during a working day along with the 

purpose of each trip, and the number of vehicles owned by households were available, among other 

information.  

 We determined the set of essential trips for each household based on the information on the 

purpose of the trips. We categorized trips concerning work, school, childcare, medical, fitness, 

community meetings, volunteer activities, visiting friends and family, and entertainment activities as 

essential, and the rest of the trips as non-essential. Among the 1184 households residing in the San Diego 

County, 573 of them did not report any essential trips during the survey day, and therefore were not 

considered for the shared ownership program. These households, however, were taken into consideration 

for the carsharing program (which will be discussed later). The remaining 611 households were 

considered for clustering.  

 The first step in implementing the program is to cluster households. Each cluster should include a 

number of households with enough commonalities that would interest them to participate in the shared 

vehicle ownership and use program together. Various parameters can be used to determine a suitable 

cluster for a households, including home location, demographics and social status of household members, 

level of spatiotemporal proximity of trips between households, and income level, to name a few. In the 

interest of simplicity, we determine the clusters solely based on household home locations, using the 

hierarchical agglomerative clustering method (24).  

Figure 5(a) displays the resulting clusters, distinguished by color. About 30% of the households 

were geographically isolated from others, and therefore remained as stand-alone clusters. The remaining 

428 households formed a total of 277 clusters.  Figure 5(b) shows the distribution of number of 

households in clusters. A considerable number of households remain stand-alone. This result is in fact 

expected, given the small sample size. It is expected that considering the full population, more households 

would be interested in participating in such a program.  

For each cluster, we solved the optimization problem in (3) − (10) to find the minimum number 

of vehicles required to cover the cluster’s set of essential trips. Solution times are displayed in figure 5(c). 

Not surprisingly, average solution times increase with cluster size. However, for cluster size of 6, which is 

the largest cluster size, the average solution time remains around 300 seconds, which is encouraging. The 

solution suggests that a total of 379 vehicles are required to serve all the essential trips by all clusters 

(including the one-household clusters). Comparing this number to the 1231 number of vehicles owned by 

the 611 households with non-empty sets of essential trips suggests that this program has the potential to 

have significant impacts on lowering vehicle ownership. Note that the 379 vehicles are calculated only 

based on households’ set of essential trips, and all the 1184 households in our sample still need to make 

their non-essential trips. Therefore, this number serves as a lower bound to the number of required 

vehicles. Later, we will compute the number of additional vehicles required to serve the non-essential 

trips. 

Figure 6(a) shows the distribution of number of vehicles in clusters. This figure shows that about 

200 clusters need no more than one vehicle to serve their essential trips. No cluster needs more than 4 

vehicles. Figure 6(b) shows the distribution of number of vehicles households in each cluster owned in 

year 2000. This figure suggests that a large proportion of households owned at least 2 vehicles. 

After forming clusters of households, and routing autonomous vehicles to serve clusters’ sets of 

essential trips, we need to address the non-essential trips. One possibility is to use the carsharing program 

for this purpose. The question is, what percentage of the non-essential trips can be served using the 



vehicles owned by clusters of households during their idle times. We used our heuristic algorithm to rent 

out the 379 vehicles with the goal of serving as many non-essential trips as possible. We managed to 

serve 63% percent of the non-essential trips. Using the on-demand vehicle allocation algorithm in figure 

3(a), we need 125 additional vehicles to serve the entire set of non-essential trips. This brings the total 

number of vehicles required to 504. In the year 2000, the 1184 households in our sample owned 2194 

vehicles. Therefore, this program results in a more than 4-fold reduction in vehicle ownership.  

 
(a) Clusters of households. Households in each cluster are assumed to share ownership of a set of 

autonomous vehicles 

  
(b) Distribution of clusters based on number of 

households in them 

(c) Solution time (sec) of finding the optimal 

number of vehicles and vehicle itineraries for 

each cluster size 

FIGURE 5 Clusters of households in San Diego, California 

 The savings in the number of vehicles in the proposed system originate from three different 

sources: 1- introduction of autonomous vehicles, 2- shared ownership of vehicles, and 3- ridesharing. It 

would be interesting to see how much of the savings can be attributed to each source. Towards this goal, 

we consider two additional cases. In the first case, we study the impact of households trading their current 

vehicles for autonomous vehicles. We optimize the number of autonomous vehicles required for each 

household. Results are displayed in figure 6(c). Figure 6(d) displays the current number of (ordinary) 
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vehicles households own. The total number of vehicles for all households changes from 2194 to 787, a 

near 2.5-fold decrease.  

  
(a) Histogram of number of autonomous vehicles 

required for clusters, considering ridesharing 

(b) Histogram of number of vehicles currently 

owned by cluster members  

  
(c) Histogram of number of autonomous vehicles 

required for individual households 

(d) Histogram of number of vehicles currently 

owned by individual households 

 
(e) Histogram of number of autonomous vehicles required by households, if participating in the shared 

ownership, but not shared-use program 

FIGURE 6  Vehicle Ownership Effects of Implementing the shared ownership and use program in the city 

of San Diego 

In the second case, we consider only a shared ownership system, without the possibility of 

ridesharing. The results are displayed in figure 6(e). The total number of autonomous vehicles required in 

this case decreases to 528, a decrease of about 33% with respect to the previous case where the 



autonomous vehicles were owned by individual households rather than being shared. This implies that the 

shared ownership component of the program has a considerable impact on the reduction of vehicle 

ownership. 

Adding ridesharing to the mix (Figure 6(a)) decreases the number of vehicles from 528 to 504, a 

decrease of about 5%, which although may not seem substantial, but can increase exponentially as more 

households decide to participate in the shared ownership and use program, and the cluster sizes increase. 

Comparing figures 6(a) and 6(e), it is also interesting to notice that introducing ridesharing, in addition to 

decreasing the total number of required vehicles, changes the distribution of vehicles by increasing the 

number of one-vehicle clusters. 

Although the sample of household used in this study was too small, the implementation of the 

shared vehicle ownership and use program led to substantial increase in efficiency. It can only be 

expected that with more households interested in participating in the program, the efficiency is going to 

increase at a higher rate.   

CONCLUSION 

In this paper, we propose a model for shared ownership and use of autonomous vehicles. The motivation 

behind this model was to encourage the population to switch to autonomous vehicles, by lowering the 

cost of autonomous vehicle ownership through a shared vehicle ownership and use program. For a group 

of households willing to participate in the program together, we formulated an optimization problem to 

find the minimum number of vehicles required to satisfy their transportation needs. Participants in the 

program can register their vehicles in a central carsharing program when they are not being used, in order 

to generate revenue.  

We implemented this program for a sample of households in San Diego, with 1184 households. 

We formed clusters of households based on proximity of home locations. The total number of vehicles 

required to cover the transportation demand of the entire sample under the shared ownership and use 

program experienced a 4-fold reduction.  
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